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Gradient diffusion in concentrated ferrocolloids under the influence of a magnetic field
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The effect of interparticle interactions on the gradient diffusion of magnetic grains in a concentrated
ferrocolloid under the influence of an external magnetic field is considered. The interparticle interac-
tions are described using the formalism of the direct correlation function, which is related to the value of
the thermodynamic force acting on a ferroparticle. The application of a simple representation of the
direct correlation function allows one to evaluate the contributions of short- and long-range correlations
of the particles to the ferrocolloid gradient diffusion anisotropy. The short-range correlations are negli-
gible in the case of low-concentration fluids. In concentrated ferrocolloids the contributions of short-
and long-range correlations to the coefficient of diffusion are of the same order. The theoretical results
are compared with the data of a recent experimental study of gradient diffusion in concentrated ferrocol-

loids.

PACS number(s): 82.70.Dd

I. INTRODUCTION

A magnetic fluid (ferrocolloid) is a colloidal dispersion
of magnetic particles in an ordinary fluid. Due to ferro-
particles, magnetic fluids, along with fluidity, acquire
pronounced magnetic properties [1,2]. The dependence
of the coefficient of gradient translational diffusion on the
magnetic field is one of these properties. In our previous
paper [3] the case of a low-concentration magnetic fluid
was studied. The ferroparticles were considered to be
hard spheres. The magnetic interactions typical of ferro-
colloids were presented by the interaction of magnetic
moments of ferroparticles with an external magnetic field
and interparticle dipole-dipole interactions. It was estab-
lished that in the external field the diffusion coefficient
D(H) of ferroparticles becomes anisotropic, with
D\(H)>D,(H). Physically, the reason of intensification
of the diffusion process along the field is clear: the con-
centration inhomogeneities Vn of particles are accom-
panied by the appearance of the magnetic force density
MVH (M and H being the ferrocolloid magnetization
and internal magnetic field, respectively), provoking the
reduction in Va. According to [3], the coefficients of lon-
gitudinal AD (H)=D|(H)—D(0) and transverse

AD (H)=D, (H)—D(0) diffusion satisfy the relation
TrAD (H)=AD (H)+2AD (H)=0 . (1

The experimental study of the gradient diffusion of ferro-
particles faces a serious problem: the ferrocolloids are
opaque, so the application of standard optical methods is
limited to the case of dilute colloids with magnetic phase
concentration ¢ <10~ %, In such ferrocolloids the inter-
particle interactions play almost no role.

This problem was overcome in the elegant experiment
of Bacri et al. [4], in which field dependences of the
coefficients of longitudinal and transverse diffusion of
concentrated ferrocolloids (¢=0.1) were determined.
Their experimental data confirm qualitatively the predic-
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tions of paper [3]; the diffusion of particles strengthens
along the field [AD(H)> 0], it weakens in the perpendic-
ular direction [AD,(H)<0], and both dependences
AD|(H) and AD,(H) saturate in the strong magnetic
fields. However, there is a significant quantitative
discrepancy between theory [3] and experiment [4]. Ac-
cording to [3] [see (1)], the ratio AD (H)/|AD (H)|
equals 2 for arbitrary field strength, whereas in experi-
ment [4], this value varied approximately from 1.3 in
weak magnetic fields to 3.7 in the saturation region.
Presumably this discrepancy resulted from the applica-
tion of the low-concentration approximation used in [3].
In the present paper we consider magnetic fluids of ar-
bitrary concentration. On the basis of the Lovett-Mou-
Buff equation [5], the exact expression relating the ther-
modynamic force [6] and the direct correlation function
is obtained. Next, the well-known Wertheim representa-
tion [7] of the direct correlation function is used for
determining the thermodynamic forces and diffusion
coefficients in two limiting geometries of the problem:
Vn||H and VrlH. It is shown that the neglect of short-
range particle correlations leads to the description of fer-
rocolloids within the framework of low-concentration
and effective field approximations [8-10]. The results ob-
tained for coefficients of longitudinal and transverse
diffusion are compared with experimental data [4].

II. THERMODYNAMIC FORCE
AND DIRECT CORRELATION FUNCTION

In the calculation of the thermodynamic force (driving
force of diffusion) we use the Batchelor method [6]. This
method goes back to Einstein’s classical paper [11] and
its basic idea is the following. Let us assume that in equi-
librium the concentration of particles in the system » (r)
is uniform, i.e., n =const. Deviation of the system from
equilibrium (Vn5=0) leads to the appearance of diffusion
flow jge=—DVn (D being the diffusion coefficient),
which tries to restore the initial equilibrium state. Ac-
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cording to [11] and [6], this diffusion flow in the none-
quilibrium system coincides with diffusion flow j., in the
equilibrium system under a hypothetical one-particle field
U, (r), which creates the equivalent concentration distri-
bution Vn. Due to this circumstance we may use the ap-
paratus of equilibrium thermodynamics to calculate the
diffusion flows.

Let the magnetic fluid be in a uniform magnetic field
and a one-particle external field U,(z) that uniquely
determines the distribution n =n(z). We suppose the
form of the ferrocolloid container to be ellipsoidal and z
to be one of the principal axes of the container. When
U, =0, n =const and the magnetic field inside the sam-
ple is uniform.

Let us consider a ferrocolloid layer, bounded by two
parallel planes orthogonal to z axis. The layer thickness /
is assumed to be macroscopic, / >>d, where d is the diam-
eter of particles, but it is much smaller than the charac-
teristic scale /, of concentration variations. The inequali-
ty [ <<l, means that we limit ourselves to the case of
slow changes of the function n =n (z) or small Vn values.
By virtue of this inequality, the magnetic field H inside
the layer can be regarded as uniform. We will consider
two field geometries corresponding to longitudinal (H||z)
and transverse (H1z) diffusion.

Let p(1) be the one-particle density. Here (1) stands
for the coordinate r, of particle 1 in the layer and the unit
vector e; of the orientation of its magnetic moment. The
Helmholtz free energy of the ferrocolloid layer is a func-
tional of p(1) [5,12,13],

F=Fy[p(1]+®[p(D)]+ [d(DU,(1p(1) . @

Here Fiy=kT [d(1)p(1)[Inp(1)—1] and ®[p(1)] are
ideal and nonideal (that is, related to interparticle in-
teractions) parts of the free energy, k is the Boltzmann
constant, T is the temperature, and d (1)=dr,de,. Ther
integral is taken over the layer volume and U,, (1) is the
one-particle external field equal to the sum of the magnet-
ic potential U,,(1)=—me,-H,,, (m being the grain mag-
netic moment) and the hypothetical field U,(z,):
U,.(1)=U, (1)+U,(z,). Let us note that the “external
field” H,,, here is actually the magnetic field that would
exist in the layer without the ferrofiuid (“cavity field””). In
terms of the internal field H and the layer magnetization
M it is given by [14]

B=H+47M, H|z
Hext= H, le . (3)
The grand thermodynamic potential is

Q=F—pu[d(1)p1), 4)

where u is the chemical potential. >stting the functional
derivative 62 /6p(1) equal to zero, we find

p=kT Inp(1)—me,-H,,+ U,(z,)—kTC(1) (5)

for the chemical potential. In the last expression we in-
troduced the one-particle direct correlation function
C(1)=—(kT)"'8®/8p(1) [5,12,13]. The function C(1)
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can be interpreted as an effective external potential
caused by interparticle interactions only.

When the fluid is in equilibrium g =const throughout
the sample. Differentiation of Eq. (5) with respect to the
coordinate r; of particle 1 gives then

Vy[kT Inp(1)+ U, (z)]=kT [d(2)c(1,2)V,p(2) . (6)

Here we used the definition of the two-particle direct
correlation function ¢(1,2)=8C(1)/8p(2) [12,13] and
the relation V-H_,,=0 [14], valid for both directions of
the magnetic field we are considering [see (3)]. Below,
¢(1,2) is simply called the direct correlation function, as is
customary in the literature [5,7,12,13,15]. Expression (6)
is a formally exact relation of the Lovett-Mou-Buff
(LMB) type [5], generalized to the case of a spatial and an
angular dependence of the distribution function on the
external potential U,(z). In the particular case of a sys-
tem with spatial degrees of freedom only p(1)=n(z,)/4m
and the results of [5] follow from (6) after the integration
over orientation e,.

In complete analogy with (6), we can obtain the LMB
equation for the orientational dependence p(e)

G [kT Inp(1)+U,,(e)]=kT [d(2)c(1,2)Gp(2), (D

where G,=e;X3/0de, is the operator of infinitesimal ro-
tation. For a homogeneous system with orientational de-
grees of freedom only where p(1)=nf (e;) and n =const,
Eq. (7) is reduced to the results of [13].

Equation (6) can be considered as the first step in the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy: it will have an ordinary form [15] if we re-
place

—kTe(1,2)V,p(2)«x(V,U,, )p(2)g (1,2) (8)

on the right-hand side. Here U, is the potential of the
interparticle interaction and g(1,2) denotes the pair distri-
bution function. It is obvious that Eq. (6) and its
BBGKY analog are not closed: to define the one-particle
density p(1) it is necessary to know the two-particle
[direct c(1,2) or pair g(1,2)] distribution function. Howev-
er, since the classical Ornstein-Zernike paper [16] it is
known that the direct correlation function possesses
simpler properties than g(1,2). This makes it possible to
use numerous approximations for ¢(1,2). This cir-
cumstance has applications in the statistical theory of
simple (see, e.g., [17]) and anisotropic [12,13] fluids.
Therefore, below we employ the BBGKY equation in the
form (6).

The expression (6) obtained from the thermodynamic
equilibrium condition in the sample V=0 can be inter-
preted as a relation of a balance of forces, acting on parti-
cle 1: the regular external force F,(1)=—V,U,(z,) and
the thermodynamic [6] force F(1)= —F,,(1). Hence, for
the thermodynamic force (the driving force of diffusion)
we have the exact formula

F(1)=—V,[kT Inp(D]+kT [d(2)c(1,2)V,p(2) . (9)

Two important remarks are in order here. First, as
mentioned above, gradients Vn in our diffusion problem
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are assumed to be small, so the direct correlation func-
tion ¢(1,2) in (9) may be calculated to zeroth order in Vn,
that is, for a spatially homogeneous case U,(z)=0,
n =const. Second, from the definitions of the hypotheti-
cal field U, (z) and F(1) it follows that the driving force is
a function of the variable z only and has a single nontrivi-
al component F,. This fact would follow from (9) if the
direct correlation function were known exactly.

III. CHOICE OF DIRECT CORRELATION FUNCTION

We write the potential of interparticle interaction
U,,(r,e,,e,) in the most general form

Uy (r,e,e))=Uyg(r)+Uy(r)+Uyl(r, e e,) . (10)

Here r is the vector of the relative position of grains;
Uys(r) denotes the potential of hard spheres with diame-
ter d, ie., Uypg(r<d)=o and Uys(r>d)=0; Uylr)
stands for a spherically symmetric short-range potential
describing such a type of ferroparticle interaction as elec-
trostatic and entropic repulsion and van der Waals at-
traction [1,2); U,(r,e,,e,) is a dipole-dipole interaction

U,(r,e,e))=m?r 3[e;-e,—3(r-e;)r-e,)/r*] . (11)

Let us consider the Wertheim representation for ¢(1,2)

(71
c(1,2)=cg(r)+ca(rA(1,2)+cp(r)D(1,2) , (12)

where cg(r),cp(r),cp(r) are spherically symmetric func-
tions and A(1,2) and D(1,2) designate the orientation-
dependent quantities

A(1,2)=el'e2 >

(13)
D(1,2)=3(r-e,)r-e,)/r*—e,e, .

Expression (12) represents three terms of the expansion of
¢(1,2) in terms of spherical harmonic functions of orienta-
tions of vectors r, €;, and e, [18]. The number of terms
one has to retain in this expansion depends on a dimen-
sionless parameter of dipole-dipole interaction
A=m?2/d*kT and grain concentration ¢=mnd>/6 (or
their product, the Langevin susceptibility
X =nm?/3kT). For values Y, <1 the approximation
(12) is fairly accurate; see [19,20].

The typical values of the Langevin susceptibility of a
ferrocolloid are smaller than 1 [1,2]. Therefore, one can
expect the representation (12) to be applicable for the
description of magnetic fluids. In general, the functions
cg(r), calr), and cp(r) depend upon the magnetic field
strength, which follows from the Ornstein-Zernike equa-
tion [15,16]. We approximate them by the values cgy(7),
cao(7), and cpo(r) in the absence of the magnetic field

c(1,2)=cgo(r)tcpo(rA(L,2)+cpo(r)D(1,2) . (14)

The simplest way to get the whole magnetization curve
M =M (H) is to use this relation. The use of Eq. (14) for
finding M (H) [see Eq. (7) for the one-particle density
p(e)] determines the most important initial (linear) sec-
tion of the curve where the interparticle interactions are
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most notable. This is a consequence of the exact
Ramshaw formula [21], relating the initial susceptibility
x [the slope of M (H)] of the dipole fluid and ¢y (7):

nfowdrcAo(r)=3(I—XL/)(—47T)(L/3). (15)

In a strong magnetic field, magnetization saturates and
the interparticle interactions are not important at all.
The thermodynamic force F(H) is known to vary as M*>
in low-concentration ferrocolloids [3]. So we expect that
the approximation (14) will be appropriate when describ-
ing the thermodynamic force too.

Below we use the representation (14) and the following
rigorous properties of the components of the direct corre-
lation function ¢(1,2) of the dipole system with an arbi-
trary, spherically symmetric, short-range potential U,(r)
decaying for large r as r ~ %, where a >4 [22]: (i) functions
csolr) and Caolr) are short range; (i)
cpolr>d)=m?* 3/kT +{(r), where ((r) is a short-
range function; and (iii) ¢p(7 <d) is finite.

IV. CALCULATION OF THERMODYNAMIC FORCES

The calculation of the thermodynamic force is fulfilled
by means of formula (9). The integration is carried out
over the layer of magnetic fluid. Since the layer is as-
sumed to be thin, the particle concentrations n(z,) and
n(z,) at points 1 and 2 satisfy the equality
Von(z,)=V n(z;)=Vn. For this reason we omit the
subscripts of differentiation operators.

Further calculations in (9) are fulfilled by taking into
account properties (i)—(iii), the explicit form of one-
particle density p(1)

p(1)=n(z;)f (e}, (16)

where f (e;) is the orientational part of p(1), and the obvi-
ous equalities

[Vf(e)de=V [ f(e)de=0, a7
[evsiede=V [ef (e)de=V(M/nm)=hV(M /nm) .
(18)

Here h=H/H is the unit vector along the field direction
and hV and the other analogous quantities in (18) denote
the dyads.

The second term in the expression for the thermo-
dynamic force (9), which we denote as F,(1), is due to the
direct correlation function. We divide it into three terms

F,(1)=Fg(z)+F,(1)+F,(1), (19)
Fs(2)=(Vn)kT [ cso(r)dr=kT(1—w)Vn/n , (20)
Fa()=(x;'—x " '—4n/3) e, h)mVM , 21
Fp(1)=4m(t—n,)e;-h)mVM , (22)

where @=(3P /0n)/kT is the inverse compressibility in
the case of dielectric fluid in the absence of an external
field (for ferrocolloids P means the osmotic pressure of
ferroparticles) and n, stands for the demagnetizing factor
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of the layer. When deriving Eq. (20), we used the equa-
tion of state of the multicomponent system in terms of
the direct correlation function [23], because a ferrocolloid
can be considered as a mixture of particles of the same
size but differing in their magnetic moment orientations.
In writing (21) we have applied the Ramshaw formula
(15).

We note that the value F(1) is due to the long-range
term only [see (ii)]. The magnitude of Fj(1) depends on
the field direction in relation to the layer plane. If the
field is normal to layer (H||z), then n; =1; when the field
lies in the plane, n; =0 [14]. The term F,(1) can be writ-
ten in a unified form for both geometries considered.
Indeed, the condition V-H_,, =0 (see Sec. II) and the rela-
tions (3) give VH +4mn,;VM =0. Hence

Fp(1)=(e;-h)m (VH +47VM /3) . (23)
Expressing the orientation distribution f (e) as
— —L .
fe) 47 sinhé exp(ée-h) , (24)

where £ is a dimensionless parameter playing the role of
an effective field acting on magnetic moment of a particle,
and taking into account relations (19)-(21) and (23) we
obtain, for the thermodynamic force,

F(1)=—kT |0 + M ye
n nm

+e,-h[VE+mVH +(x ' —x "YmVM] . (25)

As mentioned above (see Sec. II), the force F is a function
of the variable z only. Therefore, the coefficient at e;-h
must be equal to zero. Finally, we find, for the thermo-
dynamic force F,

=—kToVn/n+(M/n)VH+(x;'—x HVM] .
(26)

This expression can be obtained also by averaging (25)
with the orientational distribution f (e,).

The most interesting part of F is the field-dependent
term. We write it for two field directions with respect to
the layer normal [see Eq. (3)]

F,,(H)=———~V” [4m+x'—xr'IM M
n n g
= Vn i | M
F,(H) x| ., (28)

Here the derivatives are taken under constant values of
the induction B and the internal field H in accordance
with the condition of their continuity dH,, /9z =0.

It is obvious from the above calculations that the
values F|(H) and F,(H) are determined by both the
short- and long-range terms of the direct correlation
function (14). If the short-range particle correlations are
neglected, which is equivalent to setting co(r)=0 or re-
placing ¥y '—x~!—47/3 according to (21), then (27)
and (28) give the results of the low-concentration [3] and
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effective field approximations [4,9,10]. These approxima-
tions differ only by the fact that within the framework of
the former the derivatives in (27) and (28) are supposed to
be equal to each other: (0M /0n)g==(0M /On)y==M /n
[3]. Since this relation is also applicable in strong mag-
netic fields (H >>M) for the effective field approximation
(H =H +4mM /3=H), both theories give identical re-
sults in the saturation region

F\(H)=—2F,(H)=—(87/3)m’Vn . (29)

In turn, Eq. (29) is reduced to the diffusion coefficients re-
lation (1) (see below) contradicting the experiment [4].

The role of the short-range correlations must increase
with the growth of the magnetic fluid concentration.
This follows from the formally exact expansion of the in-
verse susceptibility in powers of the concentration
[7,19,20): x '=x;!'+47/3+0(x.). Here O(x.)
denotes a function containing all positive powers of the
concentration.

V. CALCULATION OF DIFFUSION COEFFICIENTS

We define a tensor of the gradient diffusion as the
coefficient of proportionality between the diffusion flow
and the concentration gradient

jdif: —D-Vn . (30)

The analogous definition of D was employed in [3,4,6].
In the Stokes approximation, the diffusion flow is ex-
pressed in terms of thermodynamic force F and the parti-
cle mobility b [6]:

jar=nb-F . (31)

In general, the mobility of spherical ferrocolloid particles
in an external magnetic field is a tensor quantity. This
fact is connected with the nonspherical symmetry of in-
terparticle (dipole-dipole) interactions [24]. For simplici-
ty, however, we regard the particle mobility as a scalar
quantity equal to its value b in the absence of the field.

We find the coefficients of longitudinal D and trans-
verse D, diffusion from the comparison of Egs. (26)-(28),
(30), and (31),

DH:kaco+b[417-+X_1—)(Zl]M%—1:I , (32
B
D, =bkTo+b[x '—x;'IM oM (33)
on |4

It is clear that each of the diffusion coefficients D and D |
is equal to the sum of the diffusion coefficient Dy =bkT»
and the field-dependent part AD(H)=D —D, deter-
mined by the magnetic properties of the ferrocolloid. We
notice that AD\(H)>0 and AD, (H) <O0.

The anisotropic character of diffusion in an external
field can be described by the ratio AD(H)/|AD (H)|
used for the limiting cases of weak (M =~YH) and strong
(M =nm) magnetic fields



53 GRADIENT DIFFUSION IN CONCENTRATED FERROCOLLOIDS . ..

AD (H) _ [m' +p =20/t —pr), H—0

AD ) |t (i s =2 M —pap )y H—s oo .Y

Here u,, =1+4my is the magnetic permeability of the
ferrocolloid and pu; =1-+4my, .

To plot the theoretical curves corresponding to formu-
las (32) and (33) it is necessary to know the magnetization
curve M =M (H) for a homogeneous system and the
value of w. We find M by solving the LMB equation (7)
for the orientational distribution function f(e;)=p(1)/n
with the same representation (14) of the direct correlation
function as before. After analogous calculations, we ob-
tain a pair of self-consistent equations determining M,

M=nmL(§), éE=m[H+(x;'—x "YM]/kT . (35)

Here L (§)=coth(§)—1/¢£ is the Langevin function.

The value of “inverse compressibility” o is estimated
in the following way. From the data of independent ex-
periments on small-angle x-ray [4] and neutron [25]
scattering in an ionic ferrocolloid with concentrations
¢ =<0.084 in the absence of the field, the simple relation
o(¢$)=1+20¢ was established. Applying this result to
our case, we have o=w(0.1)=3.

The experimental data in [4] are given in terms of the
reduced variations AD(H)/D, and AD (H)/D, as func-
tions of the strength of the magnetic field. We obtain for
these quantities from (32) and (33),

AD,(H)
ST kTo) Mty =y |22 Ge)
D, n g
ADJ(H) oy
D, =(kTo) ™ '[x™'—xr ' M| . (37

In calculations based on formulas (35)-(37) we used the
following experimental data [4]: d =12X 1077 cm is the
magnetic diameter of the grains, My =400 G is the bulk
magnetization, Yy =0.143, and x; =0.109. The tempera-
ture was taken to be equal to 296 K. From the experi-
mental dependence Y =y(n) no well-defined slope dx /dn
can be found. This derivative was computed within the
framework of the mean spherical model [7] from the
value y and proved to be equal to 3y /dn =1.29y/n. The
influence of the derivative on the final result, however, is
insignificant, because even a crude estimate oy /dn =Y /n
changes the reduced diffusion coefficients slightly—by
less than 10% —already in the region of weak magnetic
fields H = 15 kA/m (the magnetic field strength in the ex-
periment [4] ranged from O to 120 kA/m).

Solid lines in Fig. 1 show the calculated values of the
reduced variations of the diffusion coefficients as func-
tions of the strength of the external field. The values of
longitudinal and transverse diffusion lie higher and lower
than the abscissa axis, respectively. The dots mark the
experimental data [4].

V1. DISCUSSION

As follows from the analysis of Fig. 1, our model de-
scribes the field dependence of the diffusion coefficients
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FIG. 1. Reduced variations of D(H) as a function of the
strength of the magnetic field. The solid line is obtained from
Egs. (35)-(37) with y=0.143, x; =0.109, and ©=3. The upper
and lower curves represent the longitudinal and the transverse
diffusion, respectively. The dots mark the experimental data
from [4].

surprisingly well. A deviation from the experiment takes
place for the coefficient of transverse diffusion in the re-
gion of the strong magnetic fields only. This fact may be
connected with the field dependence of the particle mobil-
ity, which was neglected in the present investigation.
However, if this is so, this dependence cannot be strong,
as is obvious from Fig. 1.

For the parameter of asymmetry AD Il(H )/|AD (H )| of
the diffusion curve, the substitution in (34) of the experi-
mental data p,, =2.8 and pu; =2.37 gives the interval of
values from 1.7 to 4.8. This is consistent with the mea-
sured values 1.3-3.7. Within the framework of the low-
concentration approximation [3], this parameter is equal
to 2 for any field strength; in the effective field model
[8—10] it ranges from 2/u,, to 2, i.e., from 0.7 to 2. The
analysis of these results shows that the inadequacy of the
low-concentration and effective field approximations is
caused by neglecting short-range particle correlations.

The meaning of the short-range correlations is easily
seen from the following. The result (35) for the magneti-
zation law is very similar to that of the effective field
model [8-10]. The only difference is that the role of the
Lorentz constant 477 /3 in the latter theory is played by
the quantity Y7 '—x ! in our consideration. This con-
clusion also follows from the analysis of Egs. (27) and
(28). Thus, taking into account the short-range correla-
tions, that is, the term c,o(7)A(1,2) in expression (14),
leads to the “‘renormalization” of the Lorentz constant

ar/3—>xp'—x7!. (38)

The importance of the short-range correlations can be es-
timated by forming the ratio of the left- (the short-range
correlations are neglected) and right- (the correlations of
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both type are taken into account) hand sides of (38). In
the problem under consideration this ratio is equal to 1.9,
so that the contributions to the diffusion coefficient of the
short- and long-range correlations are of the same order.

VII. CONCLUSIONS

The problem of the effect of interparticle interactions
on the gradient diffusion in the concentrated ferrocolloids
under external magnetic fields is considered. The ther-
modynamic force acting on magnetic grains is found on
the basis of an exact equation relating the force to the
direct correlation function. The latter is approximated
by its value in the absence of the field. The thermo-
dynamic forces and the diffusion coefficients are obtained
for two directions of the magnetic field direction with
respect to the concentration gradient. It is shown that
the anisotropy of diffusion arising in a magnetic field is
the result of the short- and long-range correlations of fer-
roparticles. The role of the short-range correlations
grows with an increase in concentration. In concentrated
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ferrocolloids, the contributions of correlations of both
type are of the same order.

The ratio of the field-dependent parts of the longitudi-
nal and transverse diffusion in the regions of weak and
strong fields is determined by two well-defined parame-
ters. They are the initial ferrocolloid susceptibility and
its Langevin value. The magnetization law obtained from
Lovett-Mou-Buff equation and the same representation of
the direct correlation function as for the thermodynamic
force is applied in intermediate fields. The theoretical re-
sults for diffusion anisotropy are in good agreement with
the data of recent experiments [4].
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